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Abstract—A numerical method is presented for the determination of the stress and displacement fields in
two-dimensional bodies with high stress concentrations caused by the presence of a rounded notch. The
problem is formulated in terms of boundary integral equations of a type used previously by Barone and
Robinson to study the effects of sharp notches and cracks. Fundamental solutions are found numerically which
resemble the Williams' solutions for sharp notches, but satisfy the boundary conditions on the curved notch
boundary. The coeflicients of these modified Williams' solutions are treated as additional generalized
unknowns in the integral equation formulation. The corresponding singular solutions used are those developed
by Barone and Robinson.

1. INTRODUCTION

A method is described for determination of stresses and displacements in two-dimensional
elastic bodies with high stress concentrations. The formulation of the problems is based on a
boundary integral equation (BIE) technique. Major emphasis will be placed on treating
boundary value problems for bodies where at some points the radius of curvature of the
boundary becomes very small. Example of such configurations are notches where the root of
the notch is curved and parallel-sided cracks of finite but small width. In this paper the method
will be described for the rounded notch problem. However, with some modifications the
method is applicable to the problem of the crack of finite width as well,

The material of the body is assumed to be homogeneous, isotropic and linearly elastic. The
displacements are taken small enough that the linear theory of elasticity is applicable.

In recent years the boundary integral equation technique has been applied to elasticity
problems of this type (see, e.g. Refs. [6-10]). The solution of the problems under consideration
using the ordinary BIE method requires the introduction of many points in a small, localized
region of the boundary. If too many points are used near the singularity, the method can give
results which appear to be unstable with respect to the location of these points. Good results
can be obtained with comparatively few points, but if high accuracy is required an alternative to
the straightforward addition of more and more points becomes desirable. Several methods for
resolving this difficulty have been proposed{l, 11, 12].

The overall strategy of the proposed procedure is to modify the process which has been
found to work for the sharp notch[1]). The modification will run into difficulty only if the radius
of the notch is not small with respect to an overall dimension of the body, in which case the
ordinary BIE method is economically applicable, and one would not speak of a stress-
concentration problem.

The method is based on the Barone and Robinson solution technique for sharp notches[1].
In that method the displacement field in the vicinity of the singular point (the tip of the notch) is
represented by a series consisting of a linear combination of Williams’ solutions for the sharp
notch[2-4]. The unknown coeflicients weighting the individual Williams® solutions are con-
sidered to be generalized displacements. Auxiliary solutions are then developed each of which
picks out a single generalized displacement by Betti's law and relates this generalized dis-
placement to the far-field boundary values of the body under consideration. However, before
Betti’s law can be applied to the whole body, a piece of radius ¢ centered at the singular point
must be removed from the body. Eventually the limit ¢ =0 is taken.

In the Barone and Robinson solution technique the Williams' solutions are used to describe
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Fig. 1. A body with a notch having a fillet of smalf radius.
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Fig. 2. Detail of the fillet region.

the field from the singular point out to the so-called transition points. Beyond the transition
points, the usual “Kelvin™ kernel of the ordinary BIE method is used.

In the proposed method for the rounded notch, three regions of the body are considered:

i. A small inner piece containing the fillet and bounded by a circle centered at the
intersection of the two straight edges of the notch (see Figs. 1 and 2);

ii. An annular region adjacent to the inner piece as shown in Figs. 1 and 2; and

iii. The outer body, or the larger body, which consists of the rest of the body exterior to the
annulus and the annulus itself.

The inner piece is treated numerically. For the annular region an analytical solution is
developed using Williams' solutions which must be extended to include the so-called improper
Williams® solutions.} Finally the larger body is analyzed using the Barone and Robinson
solution technique where the generalized displacements express the field in the annular region.
These coefficients tie the annulus to the rest of the body.

Here, in contrast to the Barone and Robinson solution technique, a finite inner piece must be
used. The numerical solution in this inner piece reflects the details of the fillet.

2. THE MODIFIED WILLIAMS' SOLUTIONS

In the problem of the sharp notch, the Barone and Robinson Method guarantees that the
singularity is indeed a sharp notch by the presence of only the proper Williams' solutions
multiplying the generalized displacements in the region near the notch. In the case of the fillet,
any selection of generalized displacements for the annular region must similarly correspond to

+These “improper” Williams' solutions correspond to unbounded strain energy in the region near the singular point.
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the presence of the actual fillet boundary. In order to guarantee that this is the case, a set of
numerical solutions is performed for the inner body, using the ordinary BIE Method.

A complete set of tractions is chosen for the boundary (ABC, Fig. 2) of the inner piece. For
each member of the set, the corresponding displacements on ABC, (Fig. 2) are calculated along
with any quantity eventually desired in the inner piece. This numerically determined field for
the inner piece is called a “unit field.” The displacements and tractions on the boundary ABC
permit complete determination of the field in the annulus which matches the unit field of the
inner piece on their common boundary.t The number of unit fields used in the actual numerical
analysis must of course, be finite. Numerical experience in Ref. [2] indicates that 10-12 unit
fields corresponding to the tractions of the proper Wiliiams’ solutions gives excellent results for
the expansion of the traction on the outer boundary of the inner body.

The solution in the annular region corresponding to a unit field is termed a “modified
Williams' solution.” Each modified Williams’ solution is a linear combination of proper and
improper Williams' solutions, i.e. a series of the form:

M
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where the a,,;'s are the coefficients to be found from the mth unit field and the functions are the
eigenfunctions corresponding to the sharp notch (see Appendix A). They comprise real as well
as complex eigenfunctions. The scripts j <0 are used to represent the eigenfunctions with the
eigenvalues A; <0; similarly j =0 means A; = 0. The specification j# 0, 1,2 excludes rigid-body
motions.

Betti’s law is used for the determination of the a,,’s, the unknown coefficients of the mth
modified Williams’ solution. The objective is to connect the fields of the inner and annular regions
smoothly.

Consider a smaller annulus in the body with outer radius R, < R, (ABCA'B'C', Fig. 3). This
piece is loaded along the boundary ABC with the tractions of the mth unit field of the inner piece,
and along the boundary A'B'C’ with the tractions of the series representation of the same solution.
The kth improper Williams' solution is now chosen as an auxiliary.

Betti's law applied to this annular piece results in

M
Lok = IZ amiFaRY*M, )
=N
é=0,
T = [ (Db + Denr a1 S + St Re o

where R, is the radius the inner piece and the F,,, is given by eqn (B5) in Appendix B. It is also
shown in that Appendix that:

Fy=0 for j#k or Af+A#0 4)
Fy#0 for j=k or Af+a;=0. &)

Therefore,
Omi=TmiFmi ~N<jsM, j#0,1,2. 6

1The determination of the field from data on just one boundary of the annulus causes no difficulty (see Ref. [2]).



672 H. Nikooved and A. R. ROBINSON

As can be seen, the an;’s are functions of the outer radius R,, of the inner piece only. A
question naturally arises: What should be the size of the inner piece? As mentioned earlier, the
inner piece must be large enough to include the whole fillet so that the boundaries in the annular
region are straight. This will insure homogeneous boundary conditions for the edges of the
annular region. The inner piece should also be small enough that the stress gradients are not
much larger than the maximum stress divided by the diameter. This should guarantee accurate
results by the ordinary numerical integral equation process. The first condition leads to

r
Ry = tan a )

where 7 is the radius of the fillet and a is the half-opening angle of the notch. It has been found
useful in Ref. [2] to take R, to be 2.5 times this minimum value for an opening angle of 90°.

Once the unknown coefficients of the modified Williams® solution are determined, we have a
solution for the annular region which takes account of the fillet of the inner piece. This solution
can be written in series form

M M
u,, = ,,2.| Kmme u¢ = ",2-1 KmD‘m
M M
O = .2, KnSyom Oop = .,.2,, KnSpom
M
Ops = ..5.31 KnSoom ®)

where the K’s are generalized displacements and the expansion functions are the modified
Williams® solution. Here M, the total number of modified functions for the solution of a specific
problem, must be taken equal to the number of proper Williams’ solutions in each modified
Williams’ solution. Note that the first three functions in the series are the displacement field for
rigid body motions which are identical for both modified and original Williams’ solutions.

3. SOLUTION FOR THE LA2RGE BODY (LOADED BODY)

The solution procedure for the large body is essentially the same as was described in
Appendix A for the solution of the body with a sharp notch using the BIE method. In fact, the
same improper Williams’ solutions used as auxiliaries for the sharp notch problem also serve as
auxiliaries for the large body formed by the removal of the inner piece.t These auxiliaries will
pick out the unknown generalized displacements given in eqn (8).

For evaluation of integrals along the boundary formed by the removal of the finite inner
piece (Fig. 6), an equivalent path of integration can be chosen in order to simplify the
computation of the integrals. It is shown in Ref. {2] that one simple path of integration consists
of the edges of the fictitious sharp notch formed by the extension of the two straight parts of
the boundary of the inner piece (see Ref. [2]).

Since some of the solutions are unbounded at point P (Fig. 2) a small piece of radius «
centered at this point is removed from the body before application of the Betti's law to the large
body. The limit is then taken as 0.

Once the integral equations are approximated and final linear equations solved for the
unknown generalized displacements K's and other unknown boundary values, the displace-
ments and stresses at any point in the annulus can be determined using eqn (8). The unknown
fields for points in the inner piece and the larger body can be determined by eqn (A8) using the
Kelvin kernel with already computed boundary data.

Chief interest in the numerical results will, of course, center in the inner piece. If a stress
quantity of interest has been found for each unit field, a simple superposition will give the final
stresses. Alternatively, one can compute the actual boundary tractions and displacements for
the inner piece and use an ordinary BIE quadrature to arrive at the answers.

tHere, just as the case of the sharp notch, the Kelvin auxiliaries are used to pick out the rigid body translations.
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Results desired in the outer body are obtained using a body consisting of the annulus and
the outer body. An ordinary Kelvin kernel, or some combination of derivatives of it, is used as
an auxiliary.

In the annulus, the entire field is available in an analytical form as a weighted sum of
modified Williams' solutions.

4. NUMERICAL IMPLEMENTATION OF THE PROPOSED METHOD OF THE
BOUNDARY VALUE PROBLEMS WITH TRACTION PRESCRIBED

We have seen that the solution of a given problem involves two types of integral equations.
One of these types is written for the regular boundary points and the other type for the part of
the boundary where the solution is represented by the extended Williams' solutions. The
integral equations are then approximated by a set of linear algebraic equations. The system can
be presented in matrix form

[Al{u} = {B} ®

where [A] is the coefficient matrix. The entries of the column vector u are all the unknowns of
the problem, the generalized displacements, and the unknown boundary displacements at
regular points. The vector B is known.

Before solving eqn (9) for the unknowns, the rigid body displacements must be specified;
otherwise, the matrix [A] is singular. This is done by setting three unknown displacements equal
to zero and eliminating their corresponding equations from the eqn (9). These constraints must
be such that they prevent rigid body motions without inhibiting any strains due to loading.

Before calculations can be carried out, a scale must be chosen for the eigenfunctions and
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Fig. 4. An annular section of a body with a notch for development of the orthogonality condition.
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Fig. 8. Data for the sample problem.
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Table 1. Expansion coefficients for certain modified Williams® solutions

Expansion Coefficients

Mode Eigenvalue So;ution No. 4 Solution No. & ASc\ution No. 6§
No. Y AO = 0,54448 3 < 1.62926+10.23125
al 0.54448 0.769300 -0. 000666 -0.000431
5 1.62925+10.23125 -0.708000 0.978813 -0.002572
[ -0.002695 -0.001012 0.997131
7 2.87184+10.37393 0.34375% 0.007658 -0.007378
8 0.185256 0.006627 0.002075
9 4.31038+10.45549 0.527339 0.020260 0.005180
10 -0.035010 0.001954 0.009042
11 5.64712+30.54368 0.809780 0.041734 0.037121
12 -0.463231 0.014679 0.006847
13 -0.54448 -0.013316 -0.000374 0.000024
14 -1.62926-10.23125 -0.000028 -0.000008 0.000004
15 0.000199 0.000082 0.000002

1The first three modes corresponding to rigid body motions are not included in the expansion.
A is corresponding eigenvalue of the applied traction used to develop the unit field.

Table 2. Comparison of boundary data of selected unit fields and the modified Williams® solutions

Solution No. 4 Aoe = 0.54448 Solution No. § A ™ 1.62926+10.23125
Boundary Traction tx{tx23 Displ. ux/c4 Traction tx/txz Displ. “x/°
Pointsx Unit Field | Expansion | Unit Field§ Expansion|iUnit Field | Expansion| Unit Field[ Expansion

2 1.0000 1.0082 0.63523 ' 0.63548 | 1.0000 1.0054 2.64236 | 2.64218

4 1.2116 1.2103 0.59563 0.59612 | 2.9468 2.9355 1.70988 1.71063

6 1.3990 + 1.4033 0.55616 0.55640 ;4.6293 4.6330 0.79091 0.79081

8 1.5556 1.5524 0.52125 0.51845 %5.9625 $.9800 0.06009 0.06084
10 1.6676 21.5710 0.48374 i 0.48322 [:6.8963 6.8888 0.79654 0.79616
12 1.723% !1.7350 0.44910 | 0.44893 :7.4083 7.38%0 1.38089 1.38052
14 1.716% 1.717¢9 0.41260 0.41252 é7.5045 % 7.5075 1.78761 1.787%¢9
18 1.4966 1.4940 0.3253%  :0.32576 |'6.5596 ! 6.5583 2.02872 2.02834
24 0.7079 0.7071 0.14479 ? 0.14489 3.0482 33.0520 1.11313 1,11313
1See Fig. 8

g is the eigenvalue of the traction of the unit field.
teo is traction at point 2, (See Fig. 8)

t

40 = —%g ) where £ is Young modulus of elasticity and ry is shown in Fig. 9,

other extended Williams’ solutions. In the problems under consideration, the magnitude of the
vector displacement for each extended Williams' solution is set equal to rpat =0and p=r,

where r, is shown in Fig. 8.

In the problem solved the values are given in terms of r,, the applied load o, and the Young

modulus e. Poisson’s ratio is taken as » = 0.25.

The sample problem solved is shown in Figs. 6-8. The field in the annular region is

represented by four realt and four pairs of complex modified Williams’ solutions.

Table 1 gives the expansion coefficients for the first three modified Williams' solutions using

tIncluding two rigid body translation and one rotation.
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Tible 3. Generalized displacemésits

Mode Eignevalue {Generalized
No. Displacements)/uz
1 0.00 0.000
2 0.00 6.719
3 1.00 0.000
4 0.54448 6.140
5 1.6293+10.2313 4.767
6 -0.274
7 2.9718+10.3739 -2.169
8 -1.169
9 4.3104+10.4555 -0.338
10 -0.029
1 5.64712+10,5137 -0.535
12 0.326

11 corresponds to the applied traction of the unit field.

zu . EE'Q where % is the applied load and E is the modulus of elasticity.
Table 4. Selected boundary displacements
(Displacemnts)/al
Point The Propoesed Method Ordinary BIE Method
No. o, | b U, v,
1 0.000 6.331 0.000 6.330
2 -3.01% 5.664 -3.018 5.635
3 -4,658 4.897 ~4.656 4.887
4 -5.827 4.153 ~5.829 4.149
5 -6,578 3.516 -6.581 3.510
9 -8.996 ~0.699 -8.999 -0.700
11 -6.533 0.000 ~6.533 0.000
13 -4,.214 0.778 4,214 0.776
17 -0.593 4,726 =0.592 4.718
19 0.000 6.025 0.000 6.017

0,
15 - -29 ry where % is the applied load, E is Young modulus of

elasticity and r, is shown in Fig. 8.
2See Fig. 8.
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nine proper and three improper eigenfunctions. Table 2 gives one component of displacements
and tractions of the first two unit fields along with their corresponding values from the modified
Williams® solutions. It can be seen from the table that the agreement is excellent. Table 3 gives

the generalized displacements of the modified Williams® solutions for the annular region (see

Fig. 4).

The displacements for some boundary points are given in Table 4. The same table gives the
results from the solution of the fillet problem using the ordinary BIE method with 50 boundary
points. The stresses and displacements for certain points of the inner piece are given in Table 5.
Finally, the stress distribution along the axis of symmetry is given in Fig. 9.
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Table 5. Stresses and displacements at selected points of the inner piece

1. The Proposed Method

Values from:
2, Ordinary BIE Method
Pm’ntl ’ Stresses i}l ;pmements
No. uxxica cyyfou Q!Z{QD ux/° nyn
1.363 1.363 1.363 -1.962 6.002
' 1.372 1.374 1.363 -1.960 5.998
3.464 0.520 -0.764 ~1.123 5.823
10 3.459 0.526 -0.772 -1.120 5.820
2.842 1.632 0.000 0.000 6.181
2 2.842 1.628 0.000 0.000 6.180
13.522 0.002 0.000 0.000 6.265
| o 13.425 0.144 0.000 0.600 6.259
; 7.430 2.219 0.000 0.000 6.331
n 7.408 2.206 0.000 0.000 6.330
! see Fig. 7.

2 % is the applied load.

(]
3 a= 'ig rg where £ is modulus of elasticity and o {s shown in Fig.
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The solution of the problem was found to be stable with respect to the number and location
of boundary points and the number of extended Williams' solutions used in the expansion
expressions. This is also the general conclusion reached by Barone[1] for the infinitesimal crack
and sharp notch problems. This stability reflects the fact that the proposed integral equation
approach leads to a strongly diagonal system of linear algebraic equations. The accuracy of the
integral approximation is also an important factor. Certain numerical refinements such as
subdividing the boundary intervals and including the boundary curvature in the evaluation of
the singular integrals played a particularly important part in achieving accurate results.

The ordinary BIE method, by contrast, gave results that depended on the number of
boundary points chosen and their location. As mentioned before this numerical difficulty is not
unexpected as the notch sharpens. Certainly, if a moderate number of equations is to be used
with usual precision of computation, the ordinary BIE method fails for this technically
important type of problem. The proposed method involves no difficulties as the notch sharpens.
It might be mentioned that the unit fields can be calculated once and for all for any single notch
opening angle, that is, for all geometrically similar notches.

6. CONCLUSIONS

The general conclusion from the notch stresses found in Ref. {2] is that the method
developed gives accurate and numerically stable results with rather small computational effort.
The solution of the problems is fairly insensitive to the number of extended Williams® solutions
used for the region with high concentration of stresses. The solution also is not affected very
much be the number of boundary points used. Instead, it depends more on the method of
approximation used for the evaluation of the integrals. In particular, a larger interval length can
be used provided there is finer subdivision for the evaluation of the integrals. However, no

quantitative analysis has been carried out to determine the optimum interval length and
minimum computing time.
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APPENDIX A. THE WILLIAMS® SOLUTIONS

In the development of the proposed method, extensive use is made of the displacement field in the neighborhood of an
irregular boundary point. Analytical results for determination of the character of the displacement and stress fields are well
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known{3,4]. A more recent approach by Aksentian[S]. which is based on a three-dimensional elastic analysis of the
problem, provides a somewhat more general solution of the problem in the form of asymptotic expressions. A brief
description of the Williams® solution for two-dimensional bodies in plane strain will be given here.

The displacement field in the neighborhood of an irregular point in polar coordinates may be written in the form

u, = A(¢)p*
uy = B(¢)p*. (A1)
Solving the differential equations of equilibrium for the functions A(¢) and B(¢) gives
A(@)=(A~3+4p)c,cos{A - D+ cysin(A =] +cycos (A + Db+ sin(A+ 1)
B(¢)=(A+3-4v)[-c,sin(A -1 +cyc08 (A — 1)$p] = cysin(A + 1)¢ + c,cos (A + 1) (A2)

where the ¢'s are arbitrary constants of integration and v is Poisson's ratio. The corresponding stresses in polar
coordinates are:
g, = P(d)p*""
0ss = QAd)p*"!
0,4 = R($)p*"! (A3)
where
P(d)=2pA{(A ~ Dlc;cos (A = D + ¢y sin (A = 1)d] + ¢3c05 (A + 1) + ¢ sin (A + 1))}
Q(d) == 2ur{(A + Dlc,cos (A —1)p + cysin (A — 1)) + ¢c5c08 (A + )¢ + ¢gsin (A + 1)@}
R(¢) = 2uA{(A = D[- ¢, sin (A — 1) + c,c08 (A ~ @] — cysin (A + D) + ¢ cos (A + 1)} (Ad)

and p is the shear modulus.

The constants c; must be determined so that displacements and stresses satisfy the imposed boundary conditions. If the
body is a wedge, boundary conditions will be given along the sides of the wedge. For example, specifications of two
homogeneous tractions boundary conditions along each edge leads to an eigenvalue problem(3,4] with characteristic
equation of the form

sin Afy = AZsin? 8, (AS)

where 8, is the internal angle of the wedge. There are an infinite number of eigenvalues (A, m = 1,2,3,...) which satisfy
eqn (AS) and lead to an infinite number of eigenfunctions, each of which is determined to within a multiplicative constant.

Tt was shown that there are an infinite number of displacement fields each of which satisfies the homogeneous boundary
conditions. In general, the results occur in complex conjugate pairs of solutions, each pair leading to two real solutions.
Detailed representation of these fields are given by Barone[1]. For simplicity of the arguments, the eigenfunctions will be
considered in the form p*¢(¢) even if A is complex.

Any combination of the Williams' solutions is also a solution. That is, the following expressions are possible solutions of
the homogeneous problem.

", = g Knilm'  thym = Am(@)p*
Uy = g Kpllgm':  liym = Bu(d)p*~
Oop = 2 KnOpom' Tpom = Pu()p""!
Tos = 2 KnGeom: Taam = Qm(d)p*"'

Opp = 2 K,,Um; Togm = M(¢)p._" (A6)

In the Barone and Robinson solution techniques{1], the K’s serve as generalized displacements. In order to insure that
the displacements in eqn (A6) are bounded, the real part of cach eigenvalue A, must be greater or equal to zero. Such
solutions will be termed “proper” Williams® solutions. However, in eqn (AS) if A, is a solution then = A is also a
solution[1]. A solution with the real part of the eigenvalue less than zero will be called an “improper” Williams® solution.
As will be seen, these improper solutions are used as auxiliaries for the determination of the generalized displacements.
They may be expressed as

WA= Kiubn: e = AL($)p**
ub=Y Kiubn: ubn =Bie)p**
m

o5 = 2 Kiobem: O%om =PI %!
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0% = 2 Kioben: oben= Q2 ($)p**!
U‘ = 2 Kma'p‘nn uu‘m = R:(¢)pA;_‘ (A7)

It is shown in Ref. {1] that A% = — A,, where A,, is a positive eigenvalue for eqn (AS).

The solution leclmlque of Barone and Robinson

The formulation of the boundary integral equations for elastic bodies with irregular boundary points is given by Barone
and Robinson{1]. In this method the proper Williams™ solution eqn (A6), with K's as unknown generalized displacements
are used to represent the displacement field in the vicinity of the irregular boundary point up to so-calied transition points.
The integral equation for the regular boundary points are then written in usual manner (see, ¢.g. Refs. [6-10]). For irregular
boundary points a new kernel was derived which turns out to be the eigenfunctions of the improper Williams’ solution eqn
(A7). These auxiliary solutions are used to pick out the unknown generalized displacements. However, for the first two K’s
corresponding to rigid-body displacements the Kelvin auxiliary solutions are used.

Since the improper Williams' solutions are singular at an irregular point, a small circular piece of radius ¢ containing the
irregular point is removed from the body before the reciprocal theorem is applied to the actual and auxiliary solution. The
reciprocity relation for the body after taking the limit e >0 is

$ kot [ 4P QU@ s = [ u3P, QL@ s A8
L i

L

where in eqn (A8) the standard summation convention is used on the subscript j. The 1$,(P, Q) and u¥,(P, Q) are tractions
and displacements of the ith improper Williams' solution. The £(Q) and 1;(Q) are the actual traction and the displacement
of the boundary point Q in the jth coordinate direction and P is the notch root at which the aux'lmy solutions are singular.
Here M is the total number of proper Williams' solutions used, including the three rigid-body motions.t Furthermore,

an=0 for i#m
am=Fy for i=mmz}

where F,, is given by eqn (BS).

This means that the mth auxiliary solution picks out the mth generalized displacement and relates it to the far field
boundary values. The ordinary integral equations at regular points along with these new ones form a coupled system
involving the generalized displacements and other boundary values as unknowns. This leads to a strongly diagonal system
of linear algebraic equations which is solved for the unknown values. As mentioned before, the generalized displacements
depend on the boundary values at fairly remote points. This appears to contribute to a numerically stable solution.
Physically, the generalized displacements must depend on the applied loads in the far field. The fact that this dependence is
explicit in the numerical procedure is one advantage of the method.

APPENDIX B. ORTHOGONALITY CONDITIONS FOR THE
WILLIAMS' EXTENDED SOLUTIONS

Consider a body with a sharp notch of interior angle 8, (see Figs. 4,5). We remove the annulus ABCDEF from the
body as shown. Let us write Betti's law for the piece using two different Wiltiams® solution forms,

4W= ng"" WL!=0; (BU

W, = ] ((u-usglds i=12 j=1.2 (82)
L;

In eqn (B2) the summation convention is used for the lower-case indices. The L, is the curved part of the boundary and
L, consists of the two straight edges shown in Fig. 5.
Substituting for the tractions and displacement in eqn (B2) from eqn (A6), we get

WL| = qu[(p + dP)"‘““ - P"“:] (83)
or
Wi, = Foal(Am +A%)p*=*44" dp; (B4)
=ty
Fon= L . {{Am(d)P%($) + Bu(d)R%($)] - [A%($)Puid) + BHSIR.($)]} do

and,
Wi, = Guap= 17 dp; (86
Gy =Hua (¢=08)-Hn, (¢=0). (87

Here
H(¢) = {A(OIRYD) + Bo($)QUS) — [AL(SIRa(d) + BHS)Qnld)] (B8)

Substituting for W, and W), in eqn (B1) we obtain
[(Am + A8 Fy + Gy Jpn*23-0dp = 0 (B9)

+The two translations are “picked out" by Kelvin solutions. The rigid-body rotation is in the set of Williams® solutions.
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Since eqn (B9) must be true for all values of p we have
(A + AN Fpp + G =0 (B10)
We consider the two possible cases:
(a) Gpny=0 then F,,=0 if A,+A%#0 (B11)

and for A, + A% =0, eqn (B10) does not give any information about F,,. Conversely, of the first term in eqn (B10) is zero,
then G, =0.

®) Goa#0 then Fpy=-—Sm for A +A2#0 (B12)
Tt A7

which shows that the integrals around the curved boundary can be evaluated by finding the work terms at the two end
points and divide it by A, +A%.



